Penetration Deep into Tissues of Reactive Oxygen Species Generated in Floating-Electrode Dielectric Barrier Discharge (FE-DBD): in Vitro Agarose Gel Model Mimicking an Open Wound
نویسندگان
چکیده
In this manuscript we present an in vitro model based on agarose gel that can be used to simulate a dirty, oily, bloody, and morphologically complex surface of, for example, an open wound. We show this model’s effectiveness in simulating depth of penetration of reactive species generated in plasma (e.g. H2O2) deep into tissue of a rat and confirm the penetration depths with agarose gel model. We envision that in the future such a model could be used to study plasma discharges (and other modalities) and minimize the use of live animals: plasma can be optimized on the agarose gel wound model and then finally verified using an actual wound.
منابع مشابه
Deep Penetration into Tissues of Reactive Oxygen Species Generated in Floating- Electrode Dielectric Barrier Discharge (FE-DBD): An In Vitro Agarose Gel Model Mimicking an Open Wound
In this article we present an in vitro model based on agarose gel that can be used to simulate a dirty, oily, bloody, and morphologically complex surface of, for example, an open wound. We show this model’s effectiveness in simulating the depth of penetration of reactive species generated in plasma (e.g., hydrogen peroxide) deep into the tissue of a rat and confirm the penetration depths using ...
متن کاملNonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli.
Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a...
متن کاملA Numerical Study of the Sour Gas Reforming in a Dielectric Barrier Discharge Reactor
In this paper, using a one-dimensional simulation model, the reforming process of sour gas, i.e. CH4, CO2, and H2S, to the various charged particles and syngas in a dielectric barrier discharge (DBD) reactor is studied. An electric field is applied across the reactor radius, and thus a non-thermal plasma discharge is formed within the reactor. Based on the space...
متن کاملPorcine intact and wounded skin responses to atmospheric nonthermal plasma.
Thermal plasma is a valued tool in surgery for its coagulative and ablative properties. We suggested through in vitro studies that nonthermal plasma can sterilize tissues, inactive pathogens, promote coagulation, and potentiate wound healing. The present research was undertaken to study acute toxicity in porcine skin tissues. We demonstrate that floating electrode-discharge barrier discharge (F...
متن کاملRemoval properties of diesel exhaust particles by a dielectric barrier discharge reactor.
The removal properties of diesel exhaust particles (DEP) were investigated using an engine exhaust particle size spectrometer (EEPS), field emission-type scanning electron microscopy (FE-SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). DEP were treated using a dielectric barrier discharge (DBD) reactor installed in the tail pipe of a diesel engine, and a model DBD reactor fed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013